Applied Sequence Clustering Techniques for Process Mining
نویسنده
چکیده
This chapter introduces the principles of sequence clustering and presents two case studies where the technique is used to discover behavioral patterns in event logs. In the first case study, the goal is to understand the way members of a software team perform their daily work, and the application of sequence clustering reveals a set of behavioral patterns that are related to some of the main processes being carried out by that team. In the second case study, the goal is to analyze the event history recorded in a technical support database in order to determine whether the recorded behavior complies with a predefined issue handling process. In this case, the application of sequence clustering confirms that all behavioral patterns share a common trend that resembles the original process. Throughout the chapter, special attention is given to the need for data preprocessing in order to obtain results that provide insight into the typical behavior of business processes.
منابع مشابه
Repeated Record Ordering for Constrained Size Clustering
One of the main techniques used in data mining is data clustering, which has many applications in computer science, biology, and social sciences. Constrained clustering is a type of clustering in which side information provided by the user is incorporated into current clustering algorithms. One of the well researched constrained clustering algorithms is called microaggregation. In a microaggreg...
متن کاملHIERARCHICAL DATA CLUSTERING MODEL FOR ANALYZING PASSENGERS’ TRIP IN HIGHWAYS
One of the most important issues in urban planning is developing sustainable public transportation. The basic condition for this purpose is analyzing current condition especially based on data. Data mining is a set of new techniques that are beyond statistical data analyzing. Clustering techniques is a subset of it that one of it’s techniques used for analyzing passengers’ trip. The result of...
متن کاملA Comparative Analysis of Various Clustering Techniques on Random Datasets
ata Mining is a discovery of knowledge used basically used for finding or exploring the new facts among datasets. It allows the user to find the hidden data among available datasets. Data mining consists of various components including clustering, classification, association rules, sequence analysis etc. Unlabeled data are becoming common and mining such databases becomes more challenging. Clus...
متن کاملUsing Combined Descriptive and Predictive Methods of Data Mining for Coronary Artery Disease Prediction: a Case Study Approach
Heart disease is one of the major causes of morbidity in the world. Currently, large proportions of healthcare data are not processed properly, thus, failing to be effectively used for decision making purposes. The risk of heart disease may be predicted via investigation of heart disease risk factors coupled with data mining knowledge. This paper presents a model developed using combined descri...
متن کاملIntegrating AHP and data mining for effective retailer segmentation based on retailer lifetime value
Data mining techniques have been used widely in the area of customer relationship management (CRM). In this study, we have applied data mining techniques to address a problem in business-to-business (B2B) setting. In a manufacturer-retailer-consumer chain, a manufacturer should improve its relationship with retailers to continue its business. Segmentation is a useful tool for identifying groups...
متن کاملOptimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines
In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009